
COVER FE ATURE

31JANUARY 2011Published by the IEEE Computer Society0018-9162/11/$26.00 © 2011 IEEE	

performance, and a proposed research agenda that em-
phasizes new approaches to software and parallelism to
meet future expectations for performance growth.

COMPUTING GROWTH DEPENDENCE
Information technology has transformed how we work

and live—and has the potential to continue doing so. IT
helps bring distant people together, coordinate disaster
response, enhance economic productivity, enable new
medical diagnoses and treatments, add new efficiencies
to our economy, improve weather prediction and climate
modeling, broaden educational access, strengthen national
defense, advance science, and produce and deliver content
for education and entertainment.

These transformations have been made possible by
sustained improvements in computer performance. We
have been living in a world where information processing
costs have been decreasing exponentially year after year.
Moore’s law—which originally referred to an empirical
observation about the most economically favorable rate
for industry to increase the number of transistors on a
chip—has come to be associated with the expectation that
microprocessors will become faster, communication band-
width will increase, storage will become less expensive,
and, more broadly, computers will become faster. Most no-
tably, the performance of individual computer processors
increased some 10,000 times over the past two decades,
without substantial power consumption increases.

Although some might say they do not want or need a
faster computer, users and the computer industry now
depend on continuing this performance growth. Much IT

L ast year, the Computer Science and Telecommuni-
cations Board (CSTB) of the US National Academy
of Sciences released The Future of Computing
Performance: Game Over or Next Level?1 With

sponsorship from the US National Science Foundation,
the CSTB convened a committee of experts to identify
key challenges to continued growth in computing per-
formance and to outline a research agenda for meeting
the emerging computing needs of the 21st century.
These experts brought diverse perspectives in the fields
of semiconductor technology, computer architecture,
programming languages and methods, and applications
to explore challenges to sustaining performance growth
and meeting broad societal expectations for computing
now and in the future.

The committee’s observations, findings, and recom-
mendations can be broadly summarized in two categories:
energy and power constraints on growth in computing

The end of dramatic exponential growth in
single-processor performance marks the
end of the dominance of the single micro-
proessor in computing. The era of sequential
computing must give way to an era in which
parallelism holds the forefront. Although
important scientific and engineering chal-
lenges lie ahead, this is an opportune time
for innovation in programming systems
and computing architectures.

Samuel H. Fuller, Analog Devices Inc.

Lynette I. Millett, National Research Council

Computing
Performance:
Game Over or
Next Level?

COVER FE ATURE

COMPUTER	32

innovation depends on taking advantage of computing
performance’s leading edge. The IT industry annually gen-
erates a trillion dollars and has even larger indirect effects
throughout society.

This huge economic engine depends on a sustained
demand for IT products and services, which in turn fuels
demand for constantly improving performance. More
broadly, virtually every sector of society—manufactur-
ing, financial services, education, science, government, the
military, and entertainment—now depends on this contin-
ued growth in computing performance to drive industrial
productivity, increase efficiency, and enable innovation.
The performance achievements have driven an implicit,
pervasive expectation that future IT advances will occur
as an inevitable continuation of the stunning advances IT
has experienced in the past half-century.

Software developers themselves have come to depend
on performance growth across several dimensions:

•• adding visible features and ever more sophisticated
interfaces to existing applications;

•• increasing “hidden” (nonfunctional) value—such as
improved security, reliability, and other trustworthi-
ness features—without degrading the performance of
existing functions;

•• using higher-level abstractions, programming lan-
guages, and systems that require more computing
power but reduce development time and improve
software quality by making the development of cor-
rect programs and component integration easier; and

•• anticipating performance improvements and creating
innovative, computationally intensive applications
even before the required performance is available at
low cost.

Five decades of exponential performance growth have
also made dominant the general-purpose microprocessor
at the heart of every personal computer. This stems first
from a cycle of economies of scale, wherein each computer
generation has been both faster and less expensive than
the previous one. Second, increased software portability
lets current and forthcoming software applications run
correctly and faster on new computers.

These economies have resulted from the application
of Moore’s law to transistor density, along with innova-
tive approaches to effectively harness the new transistors

that have become available. Software portability has been
preserved by keeping instruction sets compatible over
many generations of microprocessors, even as the under-
lying microprocessor technology underwent substantial
enhancements, allowing investments in software to be
amortized over long periods.

The success of this virtuous cycle dampened interest
in the development of alternative computer and program-
ming models. Alternative architectures might have been
technically superior (for example, faster or more power-
efficient) in specific domains, but, generally speaking, if
they did not offer software compatibility, they could not
easily compete in the marketplace and were overtaken by
the ever-improving general-purpose processors available
at relatively low cost.

SINGLE-PROCESSOR PERFORMANCE-
GROWTH CONSTRAINTS

By the 2000s, however, it had become apparent that pro-
cessor performance growth faced two major constraints.

First, the ability to increase clock speeds locked horns
with power limits. The densest, highest-performance,
and most power-efficient integrated circuits (ICs) are con-
structed from complementary metal-oxide semiconductor
(CMOS) technology.

By 2004, the long-fruitful strategy of scaling down the
size of CMOS circuits, reducing the supply voltage, and in-
creasing the clock rate had become infeasible. Since a chip’s
power consumption is in proportion to the clock speed
times the supply voltage squared, the inability to continue
to lower the supply voltage halted developers’ ability to
increase the clock speed without increasing power dissipa-
tion.2 The resulting power consumption exceeded the few
hundred watts per chip level that can practically be dis-
sipated in a mass-market computing system, as well as the
practical limit of a few watts for mobile, battery-powered
devices. The ultimate consequence has been that growth
in single-processor performance has stalled—or at best is
being increased only marginally over time.

Second, efforts to improve individual processors’ inter-
nal architecture have netted diminishing returns. Many
advances in the architecture of general-purpose sequen-
tial processors, such as deeper pipelines and speculative
execution, have contributed to successful exploitation
of increasing transistor densities. Today, however, there
appears to be little opportunity to significantly increase
performance by improving the internal structure of exist-
ing sequential processors.

The slowdown in processor performance growth,
clock speed, and power since 2004 is evident in Figure 1,
which also shows the continued, exponential growth in
the number of transistors per chip. The original Moore’s
law projection of increasing transistors per chip remains
unabated even as performance has stalled. The 2009 edi-

Growth in single-processor
performance has stalled—or at best
is being increased only marginally
over time.

Figure 2. Historical growth in single-processor performance
and a forecast of processor performance to 2020, based on the
ITRS roadmap. A dashed line represents expectations if single-
processor performance had continued its historical trend.

10

100

1,000

10,000

100,000

1,000,000

1985 1990 1995 2000 2005 2010 2015 2020
Year of introduction

Clo
ck

 fr
eq

ue
nc

y (
M

Hz
)

33JANUARY 2011

tion of the International
Technology Roadmap for
Semiconductors (www.
itrs.net/Links/2009ITRS/
Home2009.htm) predicts
this growth continuing
through the next decade,
but we will probably
be unable to continue
increasing transistor den-
sity for CMOS circuits at
the current pace for more
than the next 10 years.

Figure 2 shows this
expectation gap using
a logarithmic vertical
scale. In 2010, this gap for
single-processor perfor-
mance is approximately
a factor of 10; by 2020,
the gap will have grown
to about a factor of 1,000.
Most economic or societal
sectors implicitly or explicitly expect computing to deliver
steady, exponentially increasing performance, but these
graphs show traditional single-processor computing sys-
tems will not match expectations.

By 2020, we will see a large “expectation gap” for single
processors. After many decades of dramatic exponen-
tial growth, single-processor performance is slowing and
not expected to improve in the foreseeable future. Energy
and power constraints play an important and growing
role in computing performance. Computer systems re-
quire energy to operate, and, as with any device, the more
energy needed, the more expensive the system is to oper-
ate and maintain. Moreover, the energy consumed by the
system ends up as heat that must be removed. Even with
new parallel models and solutions, the performance of
most future computing systems will be limited by power
or energy in ways the computer industry and researchers
have yet to confront.

For example, the benefits of replacing a single, highly
complex processor with increasing numbers of simpler
processors will eventually reach a limit when further
simplification costs more in performance than it saves in
power. Power constraints are thus inevitable for systems
ranging from handheld devices to the largest computing
datacenters, even as the transition is made to parallel
systems.

Total energy consumed by computing systems is al-
ready substantial and continues to grow rapidly in the US
and elsewhere around the world. As is the case in other
economic sectors, the total energy consumed by comput-
ing will come under increasing pressure.

Even if we succeed in sidestepping the limits on single-
processor performance, total energy consumption will
remain an important concern, and growth in performance
will become limited by power consumption within a
decade.

0

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1985 1990 1995 2000 2005 2010

Relative performance
Number of transistors (thousands)

Clock speed (MHz)
Power type (W)
Number of cores/chip

Year of introduction

Tra
ns

ist
or

s p
er

 ch
ip

Figure 1. Transistors, frequency, power, performance, and processor cores over time. The
original Moore’s law projection of increasing transistors per chip remains unabated even as
performance has stalled.

COVER FE ATURE

COMPUTER	34

In short, the single processor and the sequential pro-
gramming model that dominated computing since its birth
in the 1940s will no longer be sufficient to deliver the con-
tinued growth in performance needed to facilitate future
IT advances. Moreover, whether power and energy will be
showstoppers or just significant constraints remains an
open question. Although these issues pose major technical
challenges, they will also drive considerable innovation
in computing by forcing us to rethink the von Neumann
model that has prevailed since the 1940s.

SOLVING WITH PARALLELISM
Future growth in computing performance must come

from parallelism. Today, most software developers think
and program using a sequential programming model to
create software for single general-purpose microproces-
sors. The microprocessor industry has already begun to

deliver parallel hardware in mainstream products with
chip multiprocessors (CMPs), an approach that places new
burdens on software developers to build applications that
take advantage of multiple, distinct cores.

Although developers have found reasonable ways to use
two or even four cores effectively by running independent
tasks on each one, they have not, for the most part, paral-
lelized individual tasks to make full use of the available
computational capacity. Moreover, if industry continues
to follow the same trends, they will soon be delivering
chips with hundreds of cores. Harnessing these will re-
quire new techniques for parallel computing, including
breakthroughs in software models, languages, and tools.
Developers of both hardware and software will need to
focus more attention on overall system performance, likely
at the expense of time to market and the efficiency of the
virtuous cycle previously described.

The computer science and engineering communities
have worked for decades on the hard problems associated
with parallelism. For example, high-performance comput-
ing for science and engineering applications has depended
on particular parallel-programming techniques such as
implementing the message passing interface (MPI). In other
cases, domain-specific languages and abstractions such
as MapReduce3 have provided interfaces with behind-the-
scenes parallelism and well-chosen abstractions developed
by experts—technologies that hide the complexity of par-
allel programming from application developers.

These efforts have typically involved a small cadre of

programmers with highly specialized training in parallel
programming who work on relatively narrow computing
problems. None of this work has, however, come close to
enabling widespread use of parallel programming for a
wide array of computing problems.

A few research universities, including MIT, the Uni-
versity of Washington, and the University of California,
Berkeley, have launched or revived research programs in
parallelism. The topic has found a renewed focus in in-
dustry at companies such as Nvidia. However, these initial
investments are not commensurate with the magnitude of
the technical challenges or the stakes. Moreover, history
shows that technology advances of this sort often take a
decade or more.4 The results of such research are needed
today to sustain historical trends in computing perfor-
mance, which already puts us a decade behind. Even with
concerted investment, there is no guarantee that widely
applicable solutions will be found. If they cannot be, we
need to know this quickly so that we can explore other
avenues.

MEETING THE CHALLENGES
Current technological challenges affect not only com-

puting but also the many sectors of society that now
depend on advances in IT and computation. These suggest
national and global economic repercussions. At the same
time, the crisis in computing performance has pointed
to new opportunities for innovation in diverse hardware
and software infrastructures that excel in metrics other
than single-processor performance, such as low-power
consumption and aggregate delivery of throughput cycles.
There are opportunities for major changes in system ar-
chitectures. Further, we need extensive investment in
whole-system research to lay the foundation for next-
generation computing environments.

The CSTB committee’s recommendations are broadly
aimed at federal research agencies, the computing and
information technology industry, and educators, and they
fall into two categories. The first is research. The best sci-
ence and engineering minds must be brought to bear on
our most daunting challenges. The second category is prac-
tice and education. Better practice in developing computer
hardware and software today will provide a foundation
for future performance gains. Education will empower the
emerging generation of technical experts to understand dif-
ferent and in some cases not-yet-developed parallel models
for thinking about IT, computation, and software.

RESEARCH RECOMMENDATIONS
The committee urges investment in several crosscut-

ting areas of research, including algorithms, broadly
usable parallel programming methods, rethinking the
canonical computing stack, parallel architectures, and
power efficiency.

Whether power and energy will be
showstoppers or just significant
constraints remains an open question.

35JANUARY 2011

Researchers must invest in and develop algorithms
that can exploit parallel processing. Today, relatively little
software is explicitly parallel. To obtain the desired per-
formance, many—if not most—software designers must
grapple with parallelism. For some applications, they
might still be able to write sequential programs, leaving it
to compilers and other software tools to extract the paral-
lelism in the underlying algorithms. For more complex
applications, it might be necessary for programmers to
write explicitly parallel programs. Parallel approaches
are already used in some applications when no viable al-
ternative is available. The committee believes that careful
attention to parallelism will become the rule rather than
the exception.

Further, it will be important to invest in research on and
development of programming methods that will enable
efficient use of parallel systems by typical programmers
as well as by experts in parallel systems. Many of today’s
programming models, languages, compilers, hypervisors,
and operating systems are targeted primarily at single-
processor hardware. In the future, these layers will need
to target, optimize programs for, and be optimized them-
selves for explicitly parallel hardware.

Rethinking programming models
The intellectual keystone of this endeavor is rethinking

programming models so that programmers can express
application parallelism naturally. This will let parallel soft-
ware be developed for diverse systems rather than specific
configurations, and let system software deal with balanc-
ing computation and minimizing communication among
multiple computational units.

This situation is reminiscent of the late 1970s, when pro-
gramming models and tools were inadequate for building
substantially more complex software. Better programming
models—such as structured programming in the 1970s,
object orientation in the 1980s, and managed program-
ming languages in the 1990s—have made it possible to
produce much more sophisticated software. Analogous
advances in the form of better tools and additional train-
ing will be needed to increase programmer productivity
for parallel systems.

The ability to express application parallelism so that
an application runs faster as more cores are added would
provide a key breakthrough. The most prevalent parallel-
programming languages do not provide this performance
portability. A related question is what to do with the enor-
mous body of legacy sequential code, which will only
contribute to substantial performance improvements if it
can be parallelized.

Experience has shown that parallelizing sequential code
or highly sequential algorithms effectively is exceedingly
difficult in general. Writing software that expresses the
type of parallelism required to exploit chip multiprocessor

hardware requires new software engineering processes
and tools, including new programming languages that ease
the expression of parallelism, and a new software stack that
can exploit and map the parallelism to diverse and evolv-
ing hardware. It will also require training programmers to
solve their problems with parallel computational thinking.

The models themselves might or might not be explicitly
parallel; whether or when most programmers should be
exposed to explicit parallelism remains an open question.
A single, universal programming model might or might not
exist, so multiple models—including some domain-specific
ones—should be explored.

We need additional research in the development of new
libraries and programming languages, with appropriate
compilation and runtime support that embodies the new
programming models. It seems reasonable to expect that

some programming models, libraries, and languages will
be suited for a broad base of skilled but not superstar pro-
grammers. They could even appear on the surface to be
sequential or declarative. Others, however, will target effi-
ciency, contributing to the highest performance for critical
subsystems that are to be extensively reused, and thus be
intended for a smaller set of expert programmers.

System software
Research should also focus on system software for

highly parallel systems. Although today’s operating sys-
tems can handle some modest parallelism, future systems
will include many more processors whose allocation, load
balancing, and data communication and synchronization
interactions will be difficult to handle well. Solving those
problems will require a rethinking of how computation
and communication resources are viewed, much as de-
mands for increased memory led to the introduction of
virtual memory a half-century ago.

Long-term efforts should focus on rethinking the ca-
nonical computing “stack”—applications, programming
language, compiler, runtime, virtual machine, operating
system, hypervisor, and architecture—in light of paral-
lelism and resource-management challenges. Computer
scientists and engineers typically manage complexity by
separating the interface from its implementation. In con-
ventional computer systems, developers do this recursively
to form a computing stack of applications, programming
language, compiler, runtime, virtual machine, operat-
ing system, hypervisor, and architecture components.

Advances in the form of better tools
and additional training will be needed
to increase programmer productivity
for parallel systems.

COVER FE ATURE

COMPUTER	36

Whether today’s conventional stack provides the right
framework to support parallelism and manage resources
remains unclear. The structure and elements of the stack
itself should be a focus of long-term research exploration.

Rethinking architecture
We must invest in research on and development of

parallel architectures driven by applications, includ-
ing enhancements to chip multiprocessor systems and
conventional data-parallel architectures, cost-effective
designs for application-specific architectures, and support
for radically different approaches. In addition, advances
in architecture and hardware will play an important role.
One path forward continues to refine CMPs and asso-
ciated architectural approaches. We must determine if
today’s CMP approaches are suitable for designing most
computers.

The current CMP architecture, the heart of this archi-
tectural franchise, keeps companies investing heavily.
But CMP architectures bring their own challenges. We
must determine if large numbers of cores work in most
computer deployments, such as desktops and even mobile
phones. We must then see how the cores can be harnessed
temporarily, in an automated or semiautomated fashion, to
overcome sequential bottlenecks. Leveraging the mecha-
nisms and policies to best exploit locality, we should keep
data stored close to other data that might be needed at the
same time or for particular computations, while avoiding
communications bottlenecks. Finally, we must address
how to handle synchronization and scheduling, how to
address the challenges associated with power and energy,
and what the new architectures mean for such system-
level features as reliability and security.

Using homogeneous processors in CMP architectures
provides one approach, but computer architectures that
include multiple or heterogeneous cores, some of which
might be more capable than others, or even use different
instruction-set architectures, could prove most effective.
Special-purpose processors have long exploited parallel-
ism, notably graphics processing units (GPUs) and digital
signal processor (DSP) hardware. These have been suc-
cessfully deployed in important segments of the market.
Other niches like these could be filled by GPUs and DSPs,
or computing cores that use more graphics for GPU sup-
port of general-purpose programs might cause differences
between the two approaches to blur.

Perhaps some entirely new architectural approach will
prove more successful. If systems with CMP architec-
tures cannot be effectively programmed, an alternative
will be needed. Work in this general area could sidestep
conventional cores and view the chip as a tabula rasa
with billions of transistors, translating into hundreds of
functional units. The effective organization of these units
into a programmable architecture is an open question.
Exploratory computing systems, based on programmable
gate arrays, offer a step in this direction, but we need con-
tinued innovation to develop programming systems that
can harness the field-programmable gate array’s potential
parallelism.

Another place where fundamentally different ap-
proaches might be needed could involve alternatives to
CMOS. There are many advantages to sticking with today’s
silicon-based CMOS technology, which has proven remark-
ably scalable over many generations of microprocessors,
and around which an enormous industrial and experi-
ence base has been established. However, it will also be
essential to invest in new computation substrates whose
underlying power efficiency promises to be fundamen-
tally better than that of silicon-based CMOSs. Computing
has benefited in the past from order-of-magnitude per-
formance improvements in power consumption in the
progression from vacuum tubes, to discrete bipolar tran-
sistors, to ICs first based on bipolar transistors, to N-type
metal-oxide-semiconductor (NMOS) logic, to CMOS. No
alternative has approached commercial availability yet,
although some show potential.

In the best case, investment will yield devices and manu-
facturing methods as yet unforeseen that will dramatically
surpass the CMOS IC. Worst case, no new technology will
emerge to help solve current problems. This uncertainty
argues for investment in multiple approaches as soon as
possible, and computer system designers would be well
advised not to expect one of the new devices to appear in
time to obviate the development of new, parallel architec-
tures built on proven CMOS technology.

We need better performance immediately. Society
cannot wait the decade or two it would take to identify,
refine, and apply a new technology that might not ma-
terialize. Moreover, even if researchers do discover a
groundbreaking technology, the investment in parallelism
would not be wasted because its advances would probably
exploit the new technology as well.

Power efficiency
Because energy consumption and power dissipation

increasingly limit computing systems, developing effi-
cient power sources is critical. We must invest in research
to make computer systems more power-efficient at all
system levels, including software, application-specific
approaches, and alternative devices. R&D efforts should

We must invest in research on and
development of parallel architectures
driven by applications.

37JANUARY 2011

address ways in which software and system architec-
tures can improve power efficiency, such as exploiting
locality and the use of domain-specific execution units.
R&D should also be aimed at making logic gates more
power-efficient. Such efforts should address alternative
physical devices beyond incremental improvements in
today’s CMOS circuits.

Exploiting parallelism alone cannot ensure continued
growth in computer performance. Developers have many
potential avenues for investigating better power efficiency,
some of which require sustained attention to known en-
gineering issues and others that require further research.
These include the following approaches:

•• Redesign the delivery of power to and removal of heat
from computing systems for increased efficiency.

•• Design and deploy systems in which we use the abso-
lute maximum fraction of power to do the computing,
and less for routing power to the system and removing
heat from it. New standards—including ones that set
ever more aggressive targets—might provide useful
incentives for the development of better techniques.

•• Develop alternatives to the general-purpose processor
that exploit locality.

•• Develop domain-specific or application-specific pro-
cessors analogous to GPUs and DSPs that provide
better performance and power consumption char-
acteristics than general-purpose processors for other
specific application domains.

•• Investigate possible new, lower-power device technol-
ogy beyond CMOS.

Additional research should focus on system designs and
software configurations that reduce power consumption,
such as when resources are idle, or reducing power-
consumption mapping applications to domain-specific
and heterogeneous hardware units, limiting the amount of
communication among disparate hardware units.

Although the shift toward CMPs will let industry
continue to scale the performance of CMPs based on
general-purpose processors for some time, general-
purpose CMPs will eventually reach their own limits.
CMP designers can trade off single-thread performance of
individual processors against lower energy dissipation
per instruction, thus allowing more instructions by mul-
tiple processors while holding the chip’s power dissipation
constant. However, that is possible only within a limited
range of energy performance.

Beyond some limit, however, lowering energy per
instruction by processor simplification can lead to deg-
radation in overall CMP performance. This happens
when processor performance starts to decrease faster
than energy per instruction, which then requires new ap-
proaches to create more energy-efficient computers.

It might be that general-purpose CMPs will prove to be
an inefficient solution in the long run, and we will need
to create more application-optimized processing units.
Tuning hardware and software toward a specific type
of application provides a much more energy-efficient
solution.

However, the current design trend is away from building
customized solutions, because increasing design complex-
ity has caused nonrecurring engineering costs for designing
chips to grow rapidly. High costs limit the range of potential
market segments to the few that have volume high enough
to justify the initial engineering investment. A shift to more
application-optimized computing systems, if necessary,
demands a new design approach that would let application-
specific chips be created at reasonable cost.

PRACTICE AND EDUCATION
RECOMMENDATIONS

Implementing the proposed research agenda, although
crucial for progress, will take time. Meanwhile, society
has an immediate and pressing need to use current and
emerging CMP systems effectively. Efforts in current devel-
opment and engineering practices and education are also
important. The CSTB committee encourages development
of open interface standards for parallel programming to
promote cooperation and innovation by sharing rather
than proliferating proprietary programming environments.

Private-sector firms are often incentivized to create
proprietary interfaces and implementations to establish a
competitive advantage. However, a lack of standardization
can impede progress because the presence of so many
incompatible approaches deprives most from achieving
the benefits of wide adoption and reuse—a major reason
industry participates in standards efforts. The committee
encourages the development of programming-interface
standards that can facilitate wide adoption of parallel pro-
gramming even as they foster competition in other areas.

We must develop tools and methods for transforming
legacy applications to parallel systems. Whatever long-
term success we achieve in the effective use of parallel
systems from rethinking algorithms and developing new
programming methods will probably come at the expense
of the backward- and cross-platform compatibility that has
been an IT economic cornerstone for decades. To salvage
value from the nation’s current, substantial IT investment,
we must seek ways to bring sequential programs into the
parallel world.

Additional research should focus
on system designs and software
configurations that reduce power
consumption.

COVER FE ATURE

COMPUTER	38

The committee urges industry and academia to develop
“power tools” that will help experts migrate legacy code
to tomorrow’s parallel computers. In addition, emphasis
should be placed on tools and strategies to enhance code
creation, maintenance, verification, and the adaptation of
parallel programs.

Computer science education must increase the em-
phasis on parallelism by using a variety of methods and
approaches to prepare students for the shape of the com-
puting resources they will work with through their careers.
We must encourage those who will develop the future’s
parallel software. To sustain IT innovation, we will need a
workforce that is adept in writing parallel applications that
run well on parallel hardware, in creating parallel software
systems, and in designing parallel hardware.

Both undergraduate and graduate students in computer
science, as well as those in other fields that intensively use
computing, will need to be educated in parallel program-
ming. The engineering, science, and computer science
curricula at both the undergraduate and graduate levels
should begin to incorporate an emphasis on parallel
computational thinking, parallel algorithms, and paral-
lel programming.

With respect to the computer-science curriculum, given
that no general-purpose paradigm has emerged, universi-
ties should teach diverse parallel-programming languages,
abstractions, and approaches until effective ways of teach-
ing and programming emerge. The necessary shape of the
needed changes will not be clear until reasonably general
parallel-programming methods have been devised and
shown to be promising.

In relation to this goal, we must improve the program-
ming workforce’s ability to cope with parallelism’s new
challenges. On the one hand, this will involve retrain-
ing today’s programmers. On the other, it will demand
developing new models and abstractions to make par-
allel programming more accessible to typically skilled
programmers.

T he end of dramatic exponential growth in single-
processor performance also ends the single micro-
processor’s dominance. The era of sequential

computing must give way to a new era in which par-
allelism holds the forefront. There is no guarantee we
can make parallel computing as common and easy to
use as yesterday’s sequential single-processor computer
systems, but unless we aggressively pursue the efforts
suggested by the CSTB committee’s recommendations, it
will be game over for growth in computing performance.
This has larger implications. If parallel programming
and software efforts fail to become widespread, the
development of exciting new applications that drive the
computer industry will slow and affect many other parts
of the economy.

Although important scientific and engineering chal-
lenges lie ahead, this is an opportune time for innovation
in programming systems and computing architectures. We
have already begun to see diversity in computer designs to
optimize for such considerations as power and throughput.
The next generation of discoveries will likely require ad-
vances at all levels of the computing systems’ hardware and
software to achieve the next level of benefits to society.

Acknowledgments
We thank the entire membership and staff of the Committee
on Sustaining Growth in Computing Performance for their
contributions to this article: Samuel H. Fuller (chair), Luiz
Andre Barroso, Robert P. Colwell, William J. Dally, Dan Dob-
berpuhl, Pradeep Dubey, Mark D. Hill, Mark Horowitz, David
Kirk, Monica Lam, Kathryn S. McKinley, Charles Moore, Kath-
erine Yelick, Lynette I. Millett, and Jon Eisenberg. Committee
member Mark Horowitz curated the data for the graphs. Sup-
port for this project was provided by the National Science
Foundation under award CNS-0630358.

References
	 1.	 National Research Council, The Future of Computing Per-

formance: Game Over or Next Level? Nat’l Academies Press,
2010.

	 2.	 R.H. Dennard et al., “Design of Ion-Implanted MOSFETS
with Very Small Physical Dimensions,” IEEE J. Solid State
Circuits, vol. 9, no. 5, 1974, pp. 256-268.

	 3.	 J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” Comm. ACM, vol. 51, no. 1,
2008, pp. 107-113.

	 4.	 National Research Council, Evolving the High-Performance
Computing and Communications Initiative to Support the
Nation’s Information Infrastructure, Nat’l Academies Press,
1995.

Samuel H. Fuller is the CTO and vice president of research
and development at Analog Devices Inc. He received a PhD
in electrical engineering from Stanford University. He is an
IEEE Fellow. Contact him at sam.fuller@analog.com.

Lynette I. Millett is senior staff officer at the Computer
Science and Telecommunications Board, National Research
Council of the National Academy of Sciences. She received
an MSc in computer science from Cornell University. Con-
tact her at lmillett@nas.edu.

The Computer Science and Telecommunications
Board of the National Academies will host a sympo-
sium planned for 22 February 2011 in Washington,
D.C., to explore future directions in sustaining com-
puting performance improvements. See http://cstb.
org for more information.

	 Selected CS articles and columns are available
	 for free at http://ComputingNow.computer.org.

