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performance, and a proposed research agenda that em-
phasizes new approaches to software and parallelism to 
meet future expectations for performance growth.

COMPUTING GROWTH DEPENDENCE
Information technology has transformed how we work 

and live—and has the potential to continue doing so. IT 
helps bring distant people together, coordinate disaster 
response, enhance economic productivity, enable new 
medical diagnoses and treatments, add new efficiencies 
to our economy, improve weather prediction and climate 
modeling, broaden educational access, strengthen national 
defense, advance science, and produce and deliver content 
for education and entertainment. 

These transformations have been made possible by 
sustained improvements in computer performance. We 
have been living in a world where information processing 
costs have been decreasing exponentially year after year. 
Moore’s law—which originally referred to an empirical 
observation about the most economically favorable rate 
for industry to increase the number of transistors on a 
chip—has come to be associated with the expectation that 
microprocessors will become faster, communication band-
width will increase, storage will become less expensive, 
and, more broadly, computers will become faster. Most no-
tably, the performance of individual computer processors 
increased some 10,000 times over the past two decades, 
without substantial power consumption increases. 

Although some might say they do not want or need a 
faster computer, users and the computer industry now 
depend on continuing this performance growth. Much IT 

L ast year, the Computer Science and Telecommuni-
cations Board (CSTB) of the US National Academy 
of Sciences released The Future of Computing 
Performance: Game Over or Next Level?1 With 

sponsorship from the US National Science Foundation, 
the CSTB convened a committee of experts to identify 
key challenges to continued growth in computing per-
formance and to outline a research agenda for meeting 
the emerging computing needs of the 21st century. 
These experts brought diverse perspectives in the fields 
of semiconductor technology, computer architecture, 
programming languages and methods, and applications 
to explore challenges to sustaining performance growth 
and meeting broad societal expectations for computing 
now and in the future. 

The committee’s observations, findings, and recom-
mendations can be broadly summarized in two categories: 
energy and power constraints on growth in computing 

The end of dramatic exponential growth in 
single-processor performance marks the 
end of the dominance of the single micro-
proessor in computing. The era of sequential 
computing must give way to an era in which 
parallelism holds the forefront. Although 
important scientific and engineering chal-
lenges lie ahead, this is an opportune time 
for innovation in programming systems 
and computing architectures.
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innovation depends on taking advantage of computing 
performance’s leading edge. The IT industry annually gen-
erates a trillion dollars and has even larger indirect effects 
throughout society.

This huge economic engine depends on a sustained 
demand for IT products and services, which in turn fuels 
demand for constantly improving performance. More 
broadly, virtually every sector of society—manufactur-
ing, financial services, education, science, government, the 
military, and entertainment—now depends on this contin-
ued growth in computing performance to drive industrial 
productivity, increase efficiency, and enable innovation. 
The performance achievements have driven an implicit, 
pervasive expectation that future IT advances will occur 
as an inevitable continuation of the stunning advances IT 
has experienced in the past half-century. 

Software developers themselves have come to depend 
on performance growth across several dimensions:

•• adding visible features and ever more sophisticated 
interfaces to existing applications;

•• increasing “hidden” (nonfunctional) value—such as 
improved security, reliability, and other trustworthi-
ness features—without degrading the performance of 
existing functions; 

•• using higher-level abstractions, programming lan-
guages, and systems that require more computing 
power but reduce development time and improve 
software quality by making the development of cor-
rect programs and component integration easier; and

•• anticipating performance improvements and creating 
innovative, computationally intensive applications 
even before the required performance is available at 
low cost.

Five decades of exponential performance growth have 
also made dominant the general-purpose microprocessor 
at the heart of every personal computer. This stems first 
from a cycle of economies of scale, wherein each computer 
generation has been both faster and less expensive than 
the previous one. Second, increased software portability 
lets current and forthcoming software applications run 
correctly and faster on new computers.

These economies have resulted from the application 
of Moore’s law to transistor density, along with innova-
tive approaches to effectively harness the new transistors 

that have become available. Software portability has been 
preserved by keeping instruction sets compatible over 
many generations of microprocessors, even as the under-
lying microprocessor technology underwent substantial 
enhancements, allowing investments in software to be 
amortized over long periods.

The success of this virtuous cycle dampened interest 
in the development of alternative computer and program-
ming models. Alternative architectures might have been 
technically superior (for example, faster or more power-
efficient) in specific domains, but, generally speaking, if 
they did not offer software compatibility, they could not 
easily compete in the marketplace and were overtaken by 
the ever-improving general-purpose processors available 
at relatively low cost. 

SINGLE-PROCESSOR PERFORMANCE-
GROWTH CONSTRAINTS

By the 2000s, however, it had become apparent that pro-
cessor performance growth faced two major constraints. 

First, the ability to increase clock speeds locked horns 
with power limits. The densest, highest-performance, 
and most power-efficient integrated circuits (ICs) are con-
structed from complementary metal-oxide semiconductor 
(CMOS) technology. 

By 2004, the long-fruitful strategy of scaling down the 
size of CMOS circuits, reducing the supply voltage, and in-
creasing the clock rate had become infeasible. Since a chip’s 
power consumption is in proportion to the clock speed 
times the supply voltage squared, the inability to continue 
to lower the supply voltage halted developers’ ability to 
increase the clock speed without increasing power dissipa-
tion.2 The resulting power consumption exceeded the few 
hundred watts per chip level that can practically be dis-
sipated in a mass-market computing system, as well as the 
practical limit of a few watts for mobile, battery-powered 
devices. The ultimate consequence has been that growth 
in single-processor performance has stalled—or at best is 
being increased only marginally over time. 

Second, efforts to improve individual processors’ inter-
nal architecture have netted diminishing returns. Many 
advances in the architecture of general-purpose sequen-
tial processors, such as deeper pipelines and speculative 
execution, have contributed to successful exploitation 
of increasing transistor densities. Today, however, there 
appears to be little opportunity to significantly increase 
performance by improving the internal structure of exist-
ing sequential processors.

The slowdown in processor performance growth, 
clock speed, and power since 2004 is evident in Figure 1, 
which also shows the continued, exponential growth in 
the number of transistors per chip. The original Moore’s 
law projection of increasing transistors per chip remains 
unabated even as performance has stalled. The 2009 edi-

Growth in single-processor 
performance has stalled—or at best  
is being increased only marginally 
over time.



Figure 2. Historical growth in single-processor performance 
and a forecast of processor performance to 2020, based on the 
ITRS roadmap. A dashed line represents expectations if single-
processor performance had continued its historical trend.
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tion of the International 
Technology Roadmap for 
Semiconductors (www.
itrs.net/Links/2009ITRS/
Home2009.htm) predicts 
this growth continuing 
through the next decade, 
but we will probably 
be unable to continue 
increasing transistor den-
sity for CMOS circuits at 
the current pace for more 
than the next 10 years.

Figure 2 shows this 
expectation gap using 
a logarithmic vertical 
scale. In 2010, this gap for 
single-processor perfor-
mance is approximately 
a factor of 10; by 2020, 
the gap will have grown 
to about a factor of 1,000. 
Most economic or societal 
sectors implicitly or explicitly expect computing to deliver 
steady, exponentially increasing performance, but these 
graphs show traditional single-processor computing sys-
tems will not match expectations.

By 2020, we will see a large “expectation gap” for single 
processors. After many decades of dramatic exponen-
tial growth, single-processor performance is slowing and 
not expected to improve in the foreseeable future. Energy 
and power constraints play an important and growing 
role in computing performance. Computer systems re-
quire energy to operate, and, as with any device, the more 
energy needed, the more expensive the system is to oper-
ate and maintain. Moreover, the energy consumed by the 
system ends up as heat that must be removed. Even with 
new parallel models and solutions, the performance of 
most future computing systems will be limited by power 
or energy in ways the computer industry and researchers 
have yet to confront.

For example, the benefits of replacing a single, highly 
complex processor with increasing numbers of simpler 
processors will eventually reach a limit when further 
simplification costs more in performance than it saves in 
power. Power constraints are thus inevitable for systems 
ranging from handheld devices to the largest computing 
datacenters, even as the transition is made to parallel 
systems.

Total energy consumed by computing systems is al-
ready substantial and continues to grow rapidly in the US 
and elsewhere around the world. As is the case in other 
economic sectors, the total energy consumed by comput-
ing will come under increasing pressure.

Even if we succeed in sidestepping the limits on single-
processor performance, total energy consumption will 
remain an important concern, and growth in performance 
will become limited by power consumption within a 
decade. 
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Figure 1. Transistors, frequency, power, performance, and processor cores over time. The 
original Moore’s law projection of increasing transistors per chip remains unabated even as 
performance has stalled. 
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In short, the single processor and the sequential pro-
gramming model that dominated computing since its birth 
in the 1940s will no longer be sufficient to deliver the con-
tinued growth in performance needed to facilitate future 
IT advances. Moreover, whether power and energy will be 
showstoppers or just significant constraints remains an 
open question. Although these issues pose major technical 
challenges, they will also drive considerable innovation 
in computing by forcing us to rethink the von Neumann 
model that has prevailed since the 1940s.

SOLVING WITH PARALLELISM
Future growth in computing performance must come 

from parallelism. Today, most software developers think 
and program using a sequential programming model to 
create software for single general-purpose microproces-
sors. The microprocessor industry has already begun to 

deliver parallel hardware in mainstream products with 
chip multiprocessors (CMPs), an approach that places new 
burdens on software developers to build applications that 
take advantage of multiple, distinct cores.

Although developers have found reasonable ways to use 
two or even four cores effectively by running independent 
tasks on each one, they have not, for the most part, paral-
lelized individual tasks to make full use of the available 
computational capacity. Moreover, if industry continues 
to follow the same trends, they will soon be delivering 
chips with hundreds of cores. Harnessing these will re-
quire new techniques for parallel computing, including 
breakthroughs in software models, languages, and tools. 
Developers of both hardware and software will need to 
focus more attention on overall system performance, likely 
at the expense of time to market and the efficiency of the 
virtuous cycle previously described. 

The computer science and engineering communities 
have worked for decades on the hard problems associated 
with parallelism. For example, high-performance comput-
ing for science and engineering applications has depended 
on particular parallel-programming techniques such as 
implementing the message passing interface (MPI). In other 
cases, domain-specific languages and abstractions such 
as MapReduce3 have provided interfaces with behind-the-
scenes parallelism and well-chosen abstractions developed 
by experts—technologies that hide the complexity of par-
allel programming from application developers.

These efforts have typically involved a small cadre of 

programmers with highly specialized training in parallel 
programming who work on relatively narrow computing 
problems. None of this work has, however, come close to 
enabling widespread use of parallel programming for a 
wide array of computing problems.

A few research universities, including MIT, the Uni-
versity of Washington, and the University of California, 
Berkeley, have launched or revived research programs in 
parallelism. The topic has found a renewed focus in in-
dustry at companies such as Nvidia. However, these initial 
investments are not commensurate with the magnitude of 
the technical challenges or the stakes. Moreover, history 
shows that technology advances of this sort often take a 
decade or more.4 The results of such research are needed 
today to sustain historical trends in computing perfor-
mance, which already puts us a decade behind. Even with 
concerted investment, there is no guarantee that widely 
applicable solutions will be found. If they cannot be, we 
need to know this quickly so that we can explore other 
avenues.

MEETING THE CHALLENGES
Current technological challenges affect not only com-

puting but also the many sectors of society that now 
depend on advances in IT and computation. These suggest 
national and global economic repercussions. At the same 
time, the crisis in computing performance has pointed 
to new opportunities for innovation in diverse hardware 
and software infrastructures that excel in metrics other 
than single-processor performance, such as low-power 
consumption and aggregate delivery of throughput cycles. 
There are opportunities for major changes in system ar-
chitectures. Further, we need extensive investment in 
whole-system research to lay the foundation for next-
generation computing environments. 

The CSTB committee’s recommendations are broadly 
aimed at federal research agencies, the computing and 
information technology industry, and educators, and they 
fall into two categories. The first is research. The best sci-
ence and engineering minds must be brought to bear on 
our most daunting challenges. The second category is prac-
tice and education. Better practice in developing computer 
hardware and software today will provide a foundation 
for future performance gains. Education will empower the 
emerging generation of technical experts to understand dif-
ferent and in some cases not-yet-developed parallel models 
for thinking about IT, computation, and software. 

RESEARCH RECOMMENDATIONS
The committee urges investment in several crosscut-

ting areas of research, including algorithms, broadly 
usable parallel programming methods, rethinking the 
canonical computing stack, parallel architectures, and 
power efficiency.

Whether power and energy will be 
showstoppers or just significant 
constraints remains an open question.
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Researchers must invest in and develop algorithms 
that can exploit parallel processing. Today, relatively little 
software is explicitly parallel. To obtain the desired per-
formance, many—if not most—software designers must 
grapple with parallelism. For some applications, they 
might still be able to write sequential programs, leaving it 
to compilers and other software tools to extract the paral-
lelism in the underlying algorithms. For more complex 
applications, it might be necessary for programmers to 
write explicitly parallel programs. Parallel approaches 
are already used in some applications when no viable al-
ternative is available. The committee believes that careful 
attention to parallelism will become the rule rather than 
the exception.

Further, it will be important to invest in research on and 
development of programming methods that will enable 
efficient use of parallel systems by typical programmers 
as well as by experts in parallel systems. Many of today’s 
programming models, languages, compilers, hypervisors, 
and operating systems are targeted primarily at single-
processor hardware. In the future, these layers will need 
to target, optimize programs for, and be optimized them-
selves for explicitly parallel hardware.

Rethinking programming models
The intellectual keystone of this endeavor is rethinking 

programming models so that programmers can express 
application parallelism naturally. This will let parallel soft-
ware be developed for diverse systems rather than specific 
configurations, and let system software deal with balanc-
ing computation and minimizing communication among 
multiple computational units.

This situation is reminiscent of the late 1970s, when pro-
gramming models and tools were inadequate for building 
substantially more complex software. Better programming 
models—such as structured programming in the 1970s, 
object orientation in the 1980s, and managed program-
ming languages in the 1990s—have made it possible to 
produce much more sophisticated software. Analogous 
advances in the form of better tools and additional train-
ing will be needed to increase programmer productivity 
for parallel systems.

The ability to express application parallelism so that 
an application runs faster as more cores are added would 
provide a key breakthrough. The most prevalent parallel-
programming languages do not provide this performance 
portability. A related question is what to do with the enor-
mous body of legacy sequential code, which will only 
contribute to substantial performance improvements if it 
can be parallelized.

Experience has shown that parallelizing sequential code 
or highly sequential algorithms effectively is exceedingly 
difficult in general. Writing software that expresses the 
type of parallelism required to exploit chip multiprocessor 

hardware requires new software engineering processes 
and tools, including new programming languages that ease 
the expression of parallelism, and a new software stack that 
can exploit and map the parallelism to diverse and evolv-
ing hardware. It will also require training programmers to 
solve their problems with parallel computational thinking.

The models themselves might or might not be explicitly 
parallel; whether or when most programmers should be 
exposed to explicit parallelism remains an open question. 
A single, universal programming model might or might not 
exist, so multiple models—including some domain-specific 
ones—should be explored.

We need additional research in the development of new 
libraries and programming languages, with appropriate 
compilation and runtime support that embodies the new 
programming models. It seems reasonable to expect that 

some programming models, libraries, and languages will 
be suited for a broad base of skilled but not superstar pro-
grammers. They could even appear on the surface to be 
sequential or declarative. Others, however, will target effi-
ciency, contributing to the highest performance for critical 
subsystems that are to be extensively reused, and thus be 
intended for a smaller set of expert programmers. 

System software
Research should also focus on system software for 

highly parallel systems. Although today’s operating sys-
tems can handle some modest parallelism, future systems 
will include many more processors whose allocation, load 
balancing, and data communication and synchronization 
interactions will be difficult to handle well. Solving those 
problems will require a rethinking of how computation 
and communication resources are viewed, much as de-
mands for increased memory led to the introduction of 
virtual memory a half-century ago.

Long-term efforts should focus on rethinking the ca-
nonical computing “stack”—applications, programming 
language, compiler, runtime, virtual machine, operating 
system, hypervisor, and architecture—in light of paral-
lelism and resource-management challenges. Computer 
scientists and engineers typically manage complexity by 
separating the interface from its implementation. In con-
ventional computer systems, developers do this recursively 
to form a computing stack of applications, programming 
language, compiler, runtime, virtual machine, operat-
ing system, hypervisor, and architecture components. 

Advances in the form of better tools 
and additional training will be needed 
to increase programmer productivity 
for parallel systems.
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Whether today’s conventional stack provides the right 
framework to support parallelism and manage resources 
remains unclear. The structure and elements of the stack 
itself should be a focus of long-term research exploration.

Rethinking architecture
We must invest in research on and development of 

parallel architectures driven by applications, includ-
ing enhancements to chip multiprocessor systems and 
conventional data-parallel architectures, cost-effective 
designs for application-specific architectures, and support 
for radically different approaches. In addition, advances 
in architecture and hardware will play an important role. 
One path forward continues to refine CMPs and asso-
ciated architectural approaches. We must determine if 
today’s CMP approaches are suitable for designing most 
computers.

The current CMP architecture, the heart of this archi-
tectural franchise, keeps companies investing heavily. 
But CMP architectures bring their own challenges. We 
must determine if large numbers of cores work in most 
computer deployments, such as desktops and even mobile 
phones. We must then see how the cores can be harnessed 
temporarily, in an automated or semiautomated fashion, to 
overcome sequential bottlenecks. Leveraging the mecha-
nisms and policies to best exploit locality, we should keep 
data stored close to other data that might be needed at the 
same time or for particular computations, while avoiding 
communications bottlenecks. Finally, we must address 
how to handle synchronization and scheduling, how to 
address the challenges associated with power and energy, 
and what the new architectures mean for such system-
level features as reliability and security. 

Using homogeneous processors in CMP architectures 
provides one approach, but computer architectures that 
include multiple or heterogeneous cores, some of which 
might be more capable than others, or even use different 
instruction-set architectures, could prove most effective. 
Special-purpose processors have long exploited parallel-
ism, notably graphics processing units (GPUs) and digital 
signal processor (DSP) hardware. These have been suc-
cessfully deployed in important segments of the market. 
Other niches like these could be filled by GPUs and DSPs, 
or computing cores that use more graphics for GPU sup-
port of general-purpose programs might cause differences 
between the two approaches to blur. 

Perhaps some entirely new architectural approach will 
prove more successful. If systems with CMP architec-
tures cannot be effectively programmed, an alternative 
will be needed. Work in this general area could sidestep 
conventional cores and view the chip as a tabula rasa 
with billions of transistors, translating into hundreds of 
functional units. The effective organization of these units 
into a programmable architecture is an open question. 
Exploratory computing systems, based on programmable 
gate arrays, offer a step in this direction, but we need con-
tinued innovation to develop programming systems that 
can harness the field-programmable gate array’s potential 
parallelism. 

Another place where fundamentally different ap-
proaches might be needed could involve alternatives to 
CMOS. There are many advantages to sticking with today’s 
silicon-based CMOS technology, which has proven remark-
ably scalable over many generations of microprocessors, 
and around which an enormous industrial and experi-
ence base has been established. However, it will also be 
essential to invest in new computation substrates whose 
underlying power efficiency promises to be fundamen-
tally better than that of silicon-based CMOSs. Computing 
has benefited in the past from order-of-magnitude per-
formance improvements in power consumption in the 
progression from vacuum tubes, to discrete bipolar tran-
sistors, to ICs first based on bipolar transistors, to N-type 
metal-oxide-semiconductor (NMOS) logic, to CMOS. No 
alternative has approached commercial availability yet, 
although some show potential.

In the best case, investment will yield devices and manu-
facturing methods as yet unforeseen that will dramatically 
surpass the CMOS IC. Worst case, no new technology will 
emerge to help solve current problems. This uncertainty 
argues for investment in multiple approaches as soon as 
possible, and computer system designers would be well 
advised not to expect one of the new devices to appear in 
time to obviate the development of new, parallel architec-
tures built on proven CMOS technology.

We need better performance immediately. Society 
cannot wait the decade or two it would take to identify, 
refine, and apply a new technology that might not ma-
terialize. Moreover, even if researchers do discover a 
groundbreaking technology, the investment in parallelism 
would not be wasted because its advances would probably 
exploit the new technology as well.

Power efficiency
Because energy consumption and power dissipation 

increasingly limit computing systems, developing effi-
cient power sources is critical. We must invest in research 
to make computer systems more power-efficient at all 
system levels, including software, application-specific 
approaches, and alternative devices. R&D efforts should 

We must invest in research on and 
development of parallel architectures 
driven by applications.
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address ways in which software and system architec-
tures can improve power efficiency, such as exploiting 
locality and the use of domain-specific execution units. 
R&D should also be aimed at making logic gates more 
power-efficient. Such efforts should address alternative 
physical devices beyond incremental improvements in 
today’s CMOS circuits.

Exploiting parallelism alone cannot ensure continued 
growth in computer performance. Developers have many 
potential avenues for investigating better power efficiency, 
some of which require sustained attention to known en-
gineering issues and others that require further research. 
These include the following approaches: 

•• Redesign the delivery of power to and removal of heat 
from computing systems for increased efficiency.

•• Design and deploy systems in which we use the abso-
lute maximum fraction of power to do the computing, 
and less for routing power to the system and removing 
heat from it. New standards—including ones that set 
ever more aggressive targets—might provide useful 
incentives for the development of better techniques.

•• Develop alternatives to the general-purpose processor 
that exploit locality.

•• Develop domain-specific or application-specific pro-
cessors analogous to GPUs and DSPs that provide 
better performance and power consumption char-
acteristics than general-purpose processors for other 
specific application domains.

•• Investigate possible new, lower-power device technol-
ogy beyond CMOS.

Additional research should focus on system designs and 
software configurations that reduce power consumption, 
such as when resources are idle, or reducing power- 
consumption mapping applications to domain-specific 
and heterogeneous hardware units, limiting the amount of 
communication among disparate hardware units.

Although the shift toward CMPs will let industry 
continue to scale the performance of CMPs based on  
general-purpose processors for some time, general- 
purpose CMPs will eventually reach their own limits. 
CMP designers can trade off single-thread performance of  
individual processors against lower energy dissipation 
per instruction, thus allowing more instructions by mul-
tiple processors while holding the chip’s power dissipation  
constant. However, that is possible only within a limited 
range of energy performance.

Beyond some limit, however, lowering energy per 
instruction by processor simplification can lead to deg-
radation in overall CMP performance. This happens 
when processor performance starts to decrease faster 
than energy per instruction, which then requires new ap-
proaches to create more energy-efficient computers.

It might be that general-purpose CMPs will prove to be 
an inefficient solution in the long run, and we will need 
to create more application-optimized processing units. 
Tuning hardware and software toward a specific type 
of application provides a much more energy-efficient 
solution.

However, the current design trend is away from building 
customized solutions, because increasing design complex-
ity has caused nonrecurring engineering costs for designing 
chips to grow rapidly. High costs limit the range of potential 
market segments to the few that have volume high enough 
to justify the initial engineering investment. A shift to more 
application-optimized computing systems, if necessary, 
demands a new design approach that would let application-
specific chips be created at reasonable cost.

PRACTICE AND EDUCATION 
RECOMMENDATIONS 

Implementing the proposed research agenda, although 
crucial for progress, will take time. Meanwhile, society 
has an immediate and pressing need to use current and 
emerging CMP systems effectively. Efforts in current devel-
opment and engineering practices and education are also 
important. The CSTB committee encourages development 
of open interface standards for parallel programming to 
promote cooperation and innovation by sharing rather 
than proliferating proprietary programming environments.

Private-sector firms are often incentivized to create 
proprietary interfaces and implementations to establish a 
competitive advantage. However, a lack of standardization 
can impede progress because the presence of so many 
incompatible approaches deprives most from achieving 
the benefits of wide adoption and reuse—a major reason 
industry participates in standards efforts. The committee 
encourages the development of programming-interface 
standards that can facilitate wide adoption of parallel pro-
gramming even as they foster competition in other areas.

We must develop tools and methods for transforming 
legacy applications to parallel systems. Whatever long-
term success we achieve in the effective use of parallel 
systems from rethinking algorithms and developing new 
programming methods will probably come at the expense 
of the backward- and cross-platform compatibility that has 
been an IT economic cornerstone for decades. To salvage 
value from the nation’s current, substantial IT investment, 
we must seek ways to bring sequential programs into the 
parallel world.

Additional research should focus 
on system designs and software 
configurations that reduce power 
consumption.
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The committee urges industry and academia to develop 
“power tools” that will help experts migrate legacy code 
to tomorrow’s parallel computers. In addition, emphasis 
should be placed on tools and strategies to enhance code 
creation, maintenance, verification, and the adaptation of 
parallel programs. 

Computer science education must increase the em-
phasis on parallelism by using a variety of methods and 
approaches to prepare students for the shape of the com-
puting resources they will work with through their careers. 
We must encourage those who will develop the future’s 
parallel software. To sustain IT innovation, we will need a 
workforce that is adept in writing parallel applications that 
run well on parallel hardware, in creating parallel software 
systems, and in designing parallel hardware.

Both undergraduate and graduate students in computer 
science, as well as those in other fields that intensively use 
computing, will need to be educated in parallel program-
ming. The engineering, science, and computer science 
curricula at both the undergraduate and graduate levels 
should begin to incorporate an emphasis on parallel 
computational thinking, parallel algorithms, and paral-
lel programming.

With respect to the computer-science curriculum, given 
that no general-purpose paradigm has emerged, universi-
ties should teach diverse parallel-programming languages, 
abstractions, and approaches until effective ways of teach-
ing and programming emerge. The necessary shape of the 
needed changes will not be clear until reasonably general 
parallel-programming methods have been devised and 
shown to be promising.

In relation to this goal, we must improve the program-
ming workforce’s ability to cope with parallelism’s new 
challenges. On the one hand, this will involve retrain-
ing today’s programmers. On the other, it will demand 
developing new models and abstractions to make par-
allel programming more accessible to typically skilled 
programmers.

T he end of dramatic exponential growth in single-
processor performance also ends the single micro-
processor’s dominance. The era of sequential 

computing must give way to a new era in which par-
allelism holds the forefront. There is no guarantee we 
can make parallel computing as common and easy to 
use as yesterday’s sequential single-processor computer 
systems, but unless we aggressively pursue the efforts 
suggested by the CSTB committee’s recommendations, it 
will be game over for growth in computing performance. 
This has larger implications. If parallel programming 
and software efforts fail to become widespread, the 
development of exciting new applications that drive the 
computer industry will slow and affect many other parts 
of the economy.

Although important scientific and engineering chal-
lenges lie ahead, this is an opportune time for innovation 
in programming systems and computing architectures. We 
have already begun to see diversity in computer designs to 
optimize for such considerations as power and throughput. 
The next generation of discoveries will likely require ad-
vances at all levels of the computing systems’ hardware and 
software to achieve the next level of benefits to society. 
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