
COMPUTER	96

THE PROFESSION

Published by the IEEE Computer Society 0018-9162/11/$26.00 © 2011 IEEE	

Computer Science:
An Interview

T his e-mail interview
with Peter Denning
sprang from comments
in the October 2010 The

Profession column, “The Future of
the Computing Profession: Read-
ers’ E-mails” about Denning’s essay,
“The Great Principles of Computing”
(American Scientist, Sept./Oct. 2010,
pp. 369-372; tinyurl.com/2dtzcdv).

SCIENCE AND ENGINEERING
Question: Remind me of the pur-

pose of your essay.
Response: I wrote for an audience

of scientists from many fields. My
purpose was to show them that the
computing field has reached maturity
and must be taken seriously in science
and engineering. In fact, there is a
strong case that computing is a great
domain of science, alongside the tra-
ditional domains of the physical, life,
and social sciences.

I appreciated your suggestion to
your readers that they should read the
article. Computing professionals need
not be defensive about their field and
can instead focus on bringing their
computing expertise into the service
of the science and engineering fields
they work with.

Question: The illustration for your
essay showed several science figures
and one engineering figure floating

in a cloud, with the computing figure
rowing a cloud canoe to join them.
Does that engineering figure really
belong among the science figures?

Response: That figure is an editorial
artist’s interpretation of the message
of the article. The artist was trying to
reflect my message that computing
is growing up and joining the ranks
of mature science and engineer-
ing. That’s why the artist probably
thought it well to include an engi-
neering figure. Perhaps a better figure
would have been a cloud marked
“computing,” with all the other fields
frantically rowing canoes to catch it.

Question: What is the relationship
between science and engineering in
computing?

Response: The science aspect
of computing emphasizes the
experimental method for making dis-
coveries and validating hypotheses.
The engineering aspect emphasizes
design and implementation processes
to manage costs and minimize failure
risks. Both aspects rely on the same
body of knowledge.

However, these two aspects do
not fully characterize computing.
There is a third aspect—the practice
of interpreting the world as informa-
tion processes and solving problems
by finding computational steps and
methods to explain and control those

processes. Today, many people call
this aspect “computational thinking,”
a term that to my mind is too narrow
because it overlooks “computational
doing,” that is, the professional
practice of computing. The compu-
tational approach can be found in
diverse science areas, for example,
DNA translation, where it has led to
important discoveries; and in diverse
engineering areas, for example, finite
element structural design, where it
has enabled the construction of very
reliable, complex systems. Comput-
ing definitely brings something new
to the party.

Question: In the academic world,
computing professionals get started in
either computer science or computer
engineering departments. Is that the
best way to organize the curriculum?

Response: It’s more complicated
than that. Students start their profes-
sional careers in other programs as
well, including software engineering,
information systems, information
science, and information technol-
ogy. Some schools have tried to blur
the distinction between computer
science and electrical and computer
engineering by creating combined
EECS departments. Some of these
degree programs are in schools of sci-
ence, some in schools of engineering,

Peter J. Denning, Naval Postgraduate School
Neville Holmes, University of Tasmania

Computing has its own paradigm, distinct from engineering
or science.

Continued on page 94

COMPUTER	94

THE PROFESSION

and some in the new generation of
schools of computing. I favor schools
of computing.

Question: Where does software
engineering fit?

Response: That continues to be
a matter of debate. The founders of
that field envisioned bringing rigorous
engineering design processes to soft-
ware so that software systems would
be predictable and fault tolerant, and
act within tolerances. There are many
today who think this goal hasn’t been
accomplished. Despite its flaws, both
schools of engineering and schools of
science claim software engineering.
In some schools, software engineer-
ing is part of computer science; in
others, it’s separate.

Question: Algorithms, processes,
and computations all seem like
abstract, mathematical entities,
whereas the practice of computing
seems like design, implementation,
and testing. Does that not make com-
puting essentially an engineering field
in its practice?

Response: No. As computing links
up with numerous other fields, com-
puting professionals will have to learn
some of the domain knowledge of
the other fields. Many of those fields
require extensive domain knowledge
of experimental methods, experiment
design, and data analysis. Comput-
ing professionals who specialize in
engineering design would have dif-
ficulty contributing to those fields. In
fact, they often have difficulty con-
tributing to engineering because the
newer, evolutionary approaches to
system development rely heavily on
experimental methods to evaluate
prototypes and decide which design
alternative to explore next.

Question: Henry Petroski, a regu-
lar columnist for American Scientist,

wrote a column for IEEE Spectrum
titled “Engineering Is Not Science”
(t inyurl.com/PtrskSp). He said,
“Confusing the two keeps us from
solving the problems of the world.”
Are computing professionals there-
fore scientists?

Response: No. As I stated, some
computing professionals emphasize
engineering practice, some science
practice, and some both together.
They all emphasize computational
practice.

Petroski is making a political argu-
ment—offering advice for politicians
who don’t make clear distinctions
about engineering and science. They
need engineering but ask for science
to solve big problems. Most fields

of engineering say they are based
on some form of science, thus they
devote some time to understanding
that science. I suppose an outsider
who doesn’t understand the subtle-
ties might think science gestates
engineering.

In computing, we have both a
scientific and an engineering para-
digm, and it’s often hard to pry them
apart. For example, we benchmark
systems and networks by running
workloads on them and measuring
their throughput and response time.
Then we take those results and design
new systems and networks that can
meet throughput and response time
targets. We use the experimental
method to parameterize the engineer-
ing design. I no longer think that it’s
a productive argument to try to sepa-
rate these two aspects of computing.
We have our own paradigm, and it
mixes the traditional paradigms in
new ways.

Question: If computing has its
own paradigm, doesn’t that imply
that computing is neither science nor

engineering, but rather a field distinct
from either? This idea would seem to
be supported by the exploitation of
computing by many other disciplines,
such as medicine and the perform-
ing arts.

Response: My sentiment exactly.
I’ve written about this twice in my
column (t inyurl.com/pjd09sep;
tinyurl.com/pjd09dec).

SCIENCE AND MATHEMATICS
Question: Mathematics is often

described as the handmaiden of the
sciences. Does this mean that math-
ematics is distinct from the sciences?

Response: The relation of math-
ematics to engineering and the
sciences is an ongoing philosophical
debate. Mathematics is concerned
with finding provably true statements
(theorems) about the relationships
among entities. Both engineering
and science use mathematics for the
models of the systems they’re build-
ing or phenomena they’re exploring.
The models enable predictions, which
scientists can validate with experi-
ments and engineers can use to find
tolerances for their systems. However,
just because both use mathematics
doesn’t mean they are subsets of
mathematics, any more than it means
they contain mathematics.

Question: How is computer science
distinct from mathematics?

Response: Computing has brought
a new dimension to this. Whereas
mathematics is a language for describ-
ing realities, computing is a means
of generating them. One of the first
questions explored in computing
was how mathematical functions
could be calculated. A program
describes a method for evaluating a
function, whereas the computation
from executing that program gener-
ates the results. When a computing
professional describes object-oriented
design to a physicist, the latter is likely
to point out that computing has no
special claim to abstraction; physi-
cists have been using abstractions
for years. In response, the computing

In computing, we have both a scientific and an
engineering paradigm, and it’s often hard to pry
them apart.

Continued from page 96

95MARCH 2011

professional is likely to point out that
objects generate processes that con-
form to the abstractions. Computing
abstractions do things.

Question: When I was an engi-
neering student long, long ago, pure
mathematics and applied mathemat-
ics were compulsory and separate
subjects for the first two years of
study. Pure mathematics was about
the theory of mathematics, and
applied mathematics was about the
computational use of mathematics—
a use that projected strongly into
third- and fourth-year subjects in vari-
ous branches of engineering. What
distinguishes computing from applied
mathematics?

Response: While it’s true that some
computations are designed by apply-
ing mathematics, others are designed
from computational thinking without
recourse to mathematics. For exam-
ple, when I build a spreadsheet that
calculates throughput and response
time for a system’s queuing model, I’m
applying the mathematics of queues.
On the other hand, when I design a
workflow system that recognizes
speech acts and tracks their com-
mitments to completion, I’m using
computational thinking. Much of
computing doesn’t apply any known
mathematics or even try to develop
new mathematics.

COMPUTING AND PEOPLE
Question: Computing today is

about more than crunching num-
bers and manipulating symbols. As
people increasingly need and want
to use computers, that is, to interact
with them personally, hasn’t cognitive
science become as relevant to com-
puting professionals as mathematics?

Response: First, I agree that com-
puting is so much more than numbers
and symbols. Computing’s biggest use
today is in systems of communica-
tion and coordination. Many people
today see their computers and the
Internet as a critical communication
system they can’t do without. This has
opened up new worlds of connections

between computing professionals and
other people. Just take a look at social
networking and the new branch of
research called network science. I
agree that some of these connections
will bring computing professionals
in contact with cognitive science and
that cognitive science will influence
many directions in computing. How-
ever, I would not want to imply that
every computing professional needs
to learn cognitive science any more
than network science.

Question: Doesn’t all this imply that
computer science should have a strong
component of ethics and sociology?

Response: Here I’d like to answer
by applying some of the distinctions
you frequently champion. Let’s distin-
guish a discipline (a field of study like
computer science) and a profession (a
set of skilled practitioners who serve
clients in a domain). Professions have
codes of ethics because it’s important
to society that their clients can trust
them to exercise their special skills in
beneficial ways. Professional societies
such as the ACM and the IEEE Com-
puter Society support professionals in
many ways, including providing a code
of ethics and curriculum recommen-
dations for supporting disciplines such
as computer science and engineering.

So, in answer to your question,
yes, the computing profession needs
a code of ethics. Computing curricula
accreditation requirements include
attention to ethics because the curri-
cula are the initial education of many
computing professionals. I recom-
mend reading “A Mature Profession
of Software Engineering,” a marvel-
ous paper by Gary Ford and Norman
Gibbs written in 1996 but quite useful
today (tinyurl.com/gfng96rp).

Question: You drew my attention to
an interesting guest blog on the online
version of Scientific American (tinyurl.
com/WartikScAm). In it, Steve Wartik
expresses the opinion that “we would
be best served by viewing Computer
Science as a branch of philosophy.”
His main point is that computer
science researchers do more philoso-

phizing than experimenting. Is this a
valid argument?

Response: That was his punch line.
His argument was that computer sci-
entists don’t do enough experimental
work to validate many of their claims,
so it looks to him like a lot of theory
without much grounding in practice.
That’s when he says it looks more like
philosophy than science.

While I can see why Wartik might
say that, I don’t accept his argument.
It doesn’t agree with the evidence
I’m seeing. I see deep, fundamental
principles in all parts of computing
(greatprinciples.org). Just because
Microsoft Windows doesn’t seem
principled to him, doesn’t mean there
are few operating systems principles.
I’m seeing an explosion of interest
in experimental methods to validate
claims, not just among researchers but
also among practitioners—consider
Google’s emphasis on data.

Question: And in conclusion?
Response: It looks to me

that computing has its own
paradigm distinct from engineering
or science, that computing has deep
principles that were not known in any
field of engineering or science, and
that as the field matures, our prac-
titioners are increasingly involved
with experimental methods as well
as design.

I’m proud to be called a computer
scientist and computing profes-
sional.

Peter J. Denning is a distinguished
professor of computer science at the
Naval Postgraduate School, Monterey,
California. He is also the director of
the Cebrowski Institute for Innova-
tion and Information Superiority and
a past president of the ACM. Readers
will find more of his writings online at
cs.gmu.edu/cne/pjd/PUBS. Contact him
at pjd@nps.edu.

Neville Holmes is an honorary
research associate at the University of
Tasmania’s School of Computing and
Information Systems. Contact him at
neville.holmes@utas.edu.au.

